
International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 
ISSN 2229-5518 

 
   
 

 
 

Application of Markov Chain Model in 

the Stock Market Trend Analysis of 

Nepal 
Madhav Kumar Bhusal 

Central Department of Statistics, Tribhuvan University, Kirtipur, Kathmandu, Nepal 
 

 

Abstract: This paper attempts to apply a Markov chain model to forecast the behavior of Nepal Stock Exchange (NEPSE) index. 

The Nepal Stock Exchange is a sole trading organization of shares in Nepal. The prediction of stock market behavior is very 

important for investors who are seekers for capital appreciation. The application of Markov chain model for forecasting the future 

states is based on the strong feature of randomness of NEPSE index. This study aims to explore the long run behavior of NEPSE 

index, the expected number of visits to a particular state and to determine the expected first return time of various states. For the 

study, the NEPSE index of 2741 trading days from August 15, 2007 to June 18, 2017 was taken as a secondary data from the 

NEPSE office. The NEPSE index shows three different states- increase (U), remains same (S) and decrease (D). The initial state 

vector and transition probability matrix, which are used to predict the behavior of index has been obtained from the close inspection 

of numbers of transitions from one state to another. The higher order transition probability matrices were obtained by using Microsoft 

excel.  The study explore that regardless of the present status of NEPSE index, in the long run the index will increase with 

probability 0.3855, remains in the same state with probability 0.1707 and decrease with probability 0.4436. It is also observed that 

the index will remain in increasing state after three days when it starts to move from the increasing state. 
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1.  Introduction 

The stock market has a significant contribution in the swiftly growing world economy. The 

fluctuation in stock market can have a profound influence on individuals and the entire 

economy as well. In the context of collecting money and capital formation, stock market is one 

of the best alternative for various business houses and companies for further expansion or 

settling up a new business venture. Generally stocks are the shares of company or organization. 

The stock exchange is a legal framework where an individual or group of individual can buy 

and sell such shares in a systematic way. In other words stock exchange is the meeting place of 

both buyers and sellers of stock. The stock market refers to the wider domain of trading 

activities of stocks. 

The development of stock market has crucial role in the economic growth of Nepal. The stock 

market in Nepal is in budding condition. The history of stock market shows that Biratnagar Jute 

Mills Ltd 1936 followed by Nepal Bank Ltd in 1937 were the beginners to float their shares in 

the Nepalese stock market. Later, with the span of time, various legal provisions and regulatory 

measures were introduced in order to improve the corporate governance of the stock market by 

the government. In 1993, after the establishment of Nepal Stock Exchange (NEPSE), the 

Nepalese stock market got momentum and opened easy access for significantly greater number 

of investors in the market. The basic objective of NEPSE is to uplift the marketability and 

liquidity of corporate securities by providing trading floor through market intermediaries and 

facilitating & regulating trading activities (7). 

The sole objective of investors to purchase stock is motivated by the desire for capital 

appreciation. Generally the companies making more profit offer greater return to the investors 

than those companies making less profit or no profit. The price of the share of the companies 

depends on the performance of the companies. There are various possible reason that affect the 

overall trend of stock market like; worldwide trend of business, natural calamities, politico-

economic situation, poor-corporate governance, varying policy of governing organization etc. 

(3). In this regard, the return on investment made by individuals, corporate bodies or 

organizations in the stock market depends on the choice or decision of selecting appropriate 

companies to purchase stocks. More precisely, the decision on selecting the most beneficial 

options in the stock market is extremely depends on how well informed you are in the stock 

analysis. That is why it is most essential to come up with statistical models and their analysis. 

These models help to predict the share price movement of stocks. A competent stock market is 

considered to have such integral characteristics in which the price of shares should randomly 

fluctuate. The random fluctuation of price of shares causes the uniform distribution of market 

information. This inherent stochastic behavior of stock market makes the prediction of possible 

states of the market more complicated. However, there are various statistical methods to study 

such phenomena like; Moving average, Regression analysis, Markov chain model, Hidden 

Markov processes, Weighted Markov chain etc. to forecast the stock market using past 

information (1). 
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2.  Literature review 

In order to analyze and predict the stock market behavior, the Markov chain model has been 

used by many researchers in different time. The following references signify the applicability of 

Markov chain model in this context. 

Choji, Eduno and Kassem (2013) applied Markov chain model to predict the possible states by 

illustrating the performance of the top two banks viz. Guarantee Trust bank of Nigeria and First 

bank of Nigeria. They used six years data from 2005 to 2010. By obtaining the transition 

probability matrix (tpm), power of the transition matrix and probability vector, they obtained 

the long run prediction of the share price of these banks whether appreciate, depreciate or 

remain unchanged regardless of current share price of the banks. They also estimate the 

probability of transition between the states by taking the performance of two banks together. 

Zhang and Zhang (2009) implemented a Markov chain model for forecasting the stock market 

trend in China. This study explore that the Markov chain has no after-effect and this model is 

more appropriate to analyze and predict the stock market index and closing stock price is more 

effective under the market mechanism. By applying the Markov chain model in the stock 

market, the researcher achieved relatively good result. They recommended that this model 

could be used in other fields like future market and bond market. They also suggested that the 

result obtain from Markov chain model for prediction should be combine with other factors 

having significant influence in stock market variations and the method should be used as a 

basis for decision making. 

Otieno, Otumba and Nyabwanga (2015) introduced Markov chain model to forecast stock 

market trend of Safaricom share in Nairobi Securities Exchange in Kenya. They used Markov 

chain model based on probability transition matrix and initial state vector to predict the 

Safaricom share prices using the data collected over April 1, 2008 to April 30, 2012. In this study 

the Markov chain prediction has been applied for a specific purpose to forecast the probability 

and this forecasted value indicate the probability of certain state of stock or shares prices in 

future rather than be in absolute state. This study also reveals that the memory less property 

and random walk capability of Markov chain model facilitates to best fit the data and to predict 

the trend. By using the Markov chain model they observed good results to predict the 

probability of each states of the shares of Safaricom.  

Mettle, Quaye and Laryea (2014) used Markov chain model with finite states to analyze the 

share price changes for five different randomly selected equities on the Ghana Stock Exchange. 

This study concluded that the application of Markov chain model as a stochastic analysis 

method in equity price studies improves the portfolio decisions. They have suggested that 

Markov chain model can be apply as a tool for improving the stock trading decisions. 

Application of this method in stock analysis improves both the investor knowledge and chances 

of higher returns. 
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2.1. Objectives of the study 

This study aims to predict and analyze the market behavior of NEPSE index by using Markov 

chain model with the help of past information. The specific objectives of the study are; 

a) To study the long run behavior of NEPSE index  

b) To determine the expected number of visits to a particular states and  

c) To find out the expected first return time of various states. 

 

 

3. Materials and methods 

Stochastic processes can be distinguished in different types depending upon the state space, 

index parameter and the dependence relations among the random variables through the 

specification of the joint distribution function. Among such processes Markov chain is a special 

type of random process. Markov chain was introduced by Andrei Andreevich Markov (1856 – 

1922). One of the important property of Markov chain model is that the occurrence of any event 

in the future depends only in the present state. The set of values taken by the Markov process is 

known as state space. A Markov process having discrete state space is termed as Markov chain 

(4). The fundamental difference between the Markov chain model and other statistical methods 

of projection like; regression model, time series analysis is that the Markov model does not 

require any mutual laws among the factors from complex predictor, it only requires the 

characteristic of evolution on the history of event (i.e. initial probability) to estimate the 

transition probability for different possible states at various time to come. By using Markov 

chain model it is easier to predict the possibility of state value in a certain period of time after 

knowing the initial probability distribution and transition probability matrix (tpm). Markov 

chain model has been extensively applied in predicting stock index for a group of stock as well 

as for a single stock (8). 

 

3.1. Definition of Markov chain 

The sequence {Xn, n ≥ 0} is said to be a Markov chain if for all state values i0, i1, i2, ……, in ϵ I , 

then 

 P{ Xn+1 = j/ X0 = i0, X1 = i1, …………….., Xn = i} = P{Xn+1 = j/ Xn = i} 

Where, i0, i1, i2, ……, in are the states in the state space I. This type of probability is called 

Markov chain probability. This indicate that regardless of its history prior to time n, the 

probability that it will make a transition to another state j depends only on state i. Here it 

should be noted that whether the particle was in that state for only a short period or a long 

period of time does not matter. 

 

 

 

1,736

IJSER © 2017
http://www.ijser.org

IJSER



International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 
ISSN 2229-5518 

 
   
 

 
 

3.2.  Transition probability and transition probability matrix 

The transition probability as defined by the Markov chain is called transition or jump 

probability from state i to state j. Then, 

    P{Xn+1 = j/ Xn = i} = pij 

This is also termed as one-step transition probability. If the transition probabilities defined 

above are independent of time (n), then such assumption is called homogenous or stationary 

Markov chain. Thus, 

   P{Xn+1 = j/ Xn = i} = P{X1 = j/ X0 = i} = pij 

The transition probabilities pij’scan be written or arranged in a matrix form as, 

     P = [pij],   i, j ϵ I 

Here, the matrix P is called transition probability matrix (tpm) or stochastic matrix. The matrix 

P insists non-negative elements with row sum unity. Hence 

    0 ≤  pij ≤ 1 and ∑ 𝑝𝑖𝑗
𝑛
𝑗=1 = 1 , √ i ϵ I 

The probability  

   pij(k) = P{Xn+k = j/ Xn = i}, √ k > 0, n ≥ 0,   i, j ϵ I 

is the k-step transition probability from state i to state j in k steps. 

The transition matrix P has the following property. 

     P(n) = Pn-1* P = Pn  

 

 

3.3.  State probability matrix 

The average transition process of Markov chain depends on the system’s initial state and the 

transition probability matrix. The system initial state is a line matrix called initial probability 

vector defined as;  P(X0 = i) = P(0) = [p0(0)  p1(0)  ……… pn(0)],  0 ≤  pi(0) ≤ 1 and ∑ 𝑝𝑖
𝑛
𝑖=0 (0) = 1 

for all states. 

Similarly, the probability vector at time n may be defined as  

P(Xn= i) = P(n) = [p0(n)  p1(n)  ………….  pn(n)],  0 ≤  pi(n)  ≤ 1 and ∑ 𝑝𝑖
𝑛
𝑖=0 (𝑛) = 1 for all 

states. 

By knowing the initial state of system and transition matrix after nth step,  

P(k+1) = P(k)* P 

Which gives;    P(1) = P(0)* P  
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     P(2) = P(1)* P = P(0)* P2 

     . 

     . 

     P(k) = P(k-1)* P = P(k-2)* P2 = ………… = P(0)* Pk 

Hence,     P(k+1) = P(0)* Pk+1 , for k ≥ 0 

This indicate that the transition probability matrix after (k+1) step is the product of initial 

probability vector and (k+1)th power of the one-step transition probability matrix. 

 

3.4. Irreducible Markov chain 

A Markov chain is said to be irreducible if it is not possible to partition the state space into two 

or more disjoint closed set. That means it consists only a single class. 

 

3.5. Absolute probability 

The state probability distribution {Pj(n), j єI}shows the probability of finding the particle at state 

j at the nth trial. If Pi(0) be the probability of finding such particle at state i at initial trial then, 

    P(Xn = j) = Pj(n) = ∑ 𝑃(𝑋𝑛 = 𝑗, 𝑋0 = 𝑖)𝑖  = ∑ 𝑃 (
𝑋𝑛 = 𝑗

𝑋0
⁄ = 𝑖)𝑖 𝑃(𝑋0 = 𝑖) 

          

          = ∑ 𝑃𝑖𝑖 (0). 𝑃𝑖𝑗(𝑛)   , n > 0 

Here, {Pi(0), i є I} is the initial probability distribution. 

 

3.6. Stationary distribution of a Markov chain 

This property of Markov chain states that regardless of the initial state of the system how does 

the stochastic process evolves, when the number of transition steps is sufficiently large, then the 

transition probability from state i to state j becomes settle down to some constant value. Thus, 

lim
𝑛→∞

𝑃𝑖𝑗 (𝑛) =  𝜋𝑗 

 

Such quantities are referred as steady state probabilities. 

If the limits  𝜋𝑗 = 𝑙𝑖𝑚
𝑛→∞

𝑃𝑗 (𝑛) =   𝑙𝑖𝑚
𝑛→∞

𝑃𝑖𝑗 (𝑛) exists and does not depend on the initial state, then 

𝑃𝑗(𝑛) =  ∑ 𝑃𝑘(𝑛 − 1)𝑃𝑘𝑗𝑘   becomes  𝜋𝑗 =  ∑ 𝜋𝑘𝑃𝑘𝑗𝑘    , as n → ∞ for j = 0, 1, 2, ……….. 

This is equivalent to   π = π * P 

The probability distribution {πi , i є I} is called stationary or invariant for the given chain if                       

𝜋𝑖 =  ∑ 𝜋𝑖𝑃𝑖𝑗𝑖 ∈𝐼   such that πi   ≥ 0 and ∑ 𝜋𝑖𝑖 = 1 
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This property of Markov chain helps to determine the long –run behavior of the chain. 

 

 

3.7.  Expected number of visits 

The expected number of visits made by the chain to state j starting from state i is given by 

𝜇𝑖𝑗(𝑛) = 𝐸(𝑁𝑖𝑗(𝑛)) 

Where, Nij(n) denote the number of visits to state j starting from state i in n-steps. 

Where, 

𝑁𝑖𝑗(𝑛) =  ∑ 𝑌𝑖𝑗
𝑛
𝑘=1 (𝑘) with 𝑌𝑖𝑗(0) =  𝜕𝑖𝑗 , the Kronecker delta. 

And  𝑌𝑖𝑗(𝑘) =     1, if Xk = j/ X0 = i 

               0, otherwise 

 

Then, 𝜇𝑖𝑗(𝑛) = 𝐸[∑ 𝑌𝑖𝑗(𝑘)𝑛
𝑘=1 ] 

 

                         =  ∑ 𝐸(𝑌𝑖𝑗(𝑘))𝑛
𝑘=1   

 

                         =  ∑ 𝑃[𝑌𝑖𝑗(𝑘) =  1]𝑛
𝑘=1   

 ∴    𝜇𝑖𝑗(𝑛) =  ∑ 𝑃𝑖𝑗

𝑛

𝑘=1
(𝑘) 

Also the expected number of visits to state j from state i after long - run is; 

 

𝜇𝑖𝑗(𝑛) =  lim
𝑛→∞

𝐸(𝑁𝑖𝑗(𝑛)) 

 

3.8. Expected return time 

For a finite irreducible Markov chain the expected return time to state j, j є I can be obtain by 

taking the reciprocal of limiting probability pij(n). 

 

3.9. Data source 

The stock price index is very important indicator for investors in order to analyze and forecast 

the stock market. It measures the changes in a financial market and represents a portfolio of 

securities trading on a particular market. 

In this study the data regarding the NEPSE index were taken from the NEPSE office. It was the 

secondary data which consist the trading day’s closing price change of NEPSE index from 

August 15, 2007 to June 18, 2017. It includes 2741 trading day’s NEPSE index during the period. 
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4. Results and discussion 

 

4.1.  Derivation of three state transition probability matrix 

The close observation of NEPSE index over the study period shows that it involves one of the 

three different states of transition at the end of each trading day. The possible movements of 

NEPSE index in such states are either increasing or decreasing or remains same. For the 

purpose of development of transition probability matrix these three different movements are 

considered as three different states in the Markov chain. The transition probability provides the 

information regarding the transition behavior of Markov chain. The elements of transition 

probability matrix indicate the probability of transitions from a particular state to another state. 

In other word, the transition probability refers to the probability of occurrence of a typical state 

from one of the existing states. This transition probability helps to make an idea about the 

likelihood of occurrence of future state and accordingly one can make the decisions. 

The NEPSE index of 2741 trading day’s shows that it was up 1075 days, remains same 477 days 

and down 1190 days. The NEPSE index recorded in the last trading day was in decreasing state 

and there is no further information about the transition state of NEPSE index in the next day. 

Due to this reason the total numbers of decreasing states are taken as 1189. 

 

Table 1: The transition matrix of NEPSE index 

 Increase in 
NEPSE index (U) 

NEPSE index 
remains same (S) 

Decrease in 
NEPSE index (D) 

Increase in NEPSE index (U) 521 231 323 

NEPSE index remains same (S) 184 29 264 

Decrease in NEPSE index (D) 356 208 625 

 

The transition probability matrix of NEPSE index using the above information can be 

constructed as; 

PNEPSE Index =  [
0.4847 0.2148 0.3005
0.3857 0.0608 0.5535
0.2994 0.1749 0.5257

] 

The transition diagraph for the explicit presentation of transition probability of NEPSE index is 

shown below.  
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               0.2994 

                             0.5257                               0.2148             0.3857 

                         0.5535 

      0.1749 

                

             0.0608 

 

    Figure 1: Transition diagraph of NEPSE index 

4.2.  Determination of initial state vector 

The NEPSE index during the study period shows three different states increase (U), remains 

same (S) and decrease D). The probability of occurrence of these three different states can be 

obtained from the initial state vector. The initial state vector is denoted by η(0) and given by 

η(0) = ( η1, η2, η3) 

Where, η1, η2 and η3 provide the probability that NEPSE index increase, remains same and 

decrease respectively. Then, 

η1 = 1075/2742 = 0.3920 

η2 = 477/2742 = 0.1739  

η3 = 1190/2742 = 0.4339 

Hence the initial state vector for NEPSE index is 

η(0) = (0.3920,  0.1739,  0.4339) 

 

4.3.  Computation of state probabilities for forecasting the NEPSE index 

The Markov chain model suggests that, the state probability for various periods can be obtained 

by multiplying transition probability matrix and initial state vector i.e.  η(i+1) = η(i) * P. Where, η(i) 

is the state vector for ith state and P is the transition probability matrix. The state probability for 

the NEPSE index at the end of 2743th day will be 

  D 

 U 

UU

U 

  S 
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η(1) = η(0) * PNEPSE index = (0.3920, 0.1739, 0.4339) [
0.4847 0.2148 0.3005
0.3857 0.0608 0.5535
0.2994 0.1749 0.5257

] 

                                         = (0.3869, 0.1710, 0.4421)  

The above result shows that there is maximum possibility that the NEPSE index will be 

decrease with probability 0.4421 at the end of 2743th day. The index will be in the state increase 

with probability 0.3869 and it will remain in the same state with probability 0.1710.  In the 

similar manner, the state probability of NEPSE index at the end of 2744th day will be 

η(2) = η(1) * PNEPSE index  = (0.3859,  0.1708,  0.4433) 

The above probability shows that the NEPSE index will be increase with probability 0.3859, the 

index will remain in the same state with probability 0.1708 and the index will decrease with 

probability 0.4433 at the end of 2744th trading day.  

 

4.4. Decision making under long run behavior of NEPSE index 

The forecasting of long run behavior of NEPSE index is very meaningful for investors. The 

identification of probable future state of the market is the guideline to make decision for 

investment. The optimistic market attracts the investors to invest much in order to appreciate 

their investment. The long run behavior of stock index can be determined by using nth step 

transition probability matrix. The behavior of stock index nth step later can be identify from nth 

step transition probability matrix P(n). The transition probability matrix P(n) converges to 

limiting transition matrix with the increase in number of steps. This limiting transition 

probability matrix provides the steady state probability of stock index in different states like 

increase, remains same and decrease in the future. The long run behavior of NEPSE index is 

observed by determining the higher order transition probability matrix of NEPSE index by 

using Microsoft Excel as given below:  

 

P(2)NEPSE index =  [
0.4077 0.1697 0.4225
0.3761 0.1833 0.4405
0.3699 0.1668 0.4631

] 

 

P(4)NEPSE index =  [
0.3864 0.1708 0.4427
0.3853 0.1709 0.4437
0.3849 0.1706 0.4443

] 

 

P(5)NEPSE index =  [
0.3857 0.1708 0.4434
0.3855 0.1707 0.4436
0.3854 0.1707 0.4437

] 
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P(6)NEPSE index =  [
0.3856 0.1708 0.4435
0.3855 0.1707 0.4436
0.3855 0.1707 0.4436

] 

 

P(7)NEPSE index =  [
0.3855 0.1707 0.4436
0.3855 0.1707 0.4436
0.3855 0.1707 0.4436

] = P(8) = P(9) = P(10) = …………  and so on. 

The higher order transition probability matrix of NEPSE index computed above shows that 

after the 6th trading days since 2742 trading days, the transition probability matrix tends to the 

steady state or the state of equilibrium. After then the transition probability matrix remains 

unchanged for the onward consecutive trading days. This steady state transition probability 

matrix of NEPSE index reveals the following information. 

The probability that the NEPSE index decrease in near future irrespective of its initial states 

increase, remains same or decrease is 0.4436. 

There is 0.3855 chances that the NEPSE index will increase in near future irrespective of its 

initial states increase, remains same or decrease. 

The chance of NEPSE index remaining in the same state in near future irrespective of its initial 

states increase, remains same or decrease is 0.1707.  

If the NEPSE index starts in a given state with initial state vector η(0) = (0.3920,  0.1739,  0.4339), 

then the probability of NEPSE index will increase, remains same or decrease at a particular 

trading day in steady state condition can be determine by multiplying the initial state vector by 

the higher order transition probability matrix obtained at state of equilibrium. Then, 

 𝜂(0) ∗ 𝑃(7) = (0.3920 0.1739 0.4339) [
0.3855 0.1707 0.4436
0.3855 0.1707 0.4436
0.3855 0.1707 0.4436

] 

         = (0.3856    0.1708    0.4436) 

This result indicates the long run probability of NEPSE index being in increasing, remains same 

or in decreasing states. The probability that the NEPSE index increasing at the state of 

equilibrium is 0.3856, decreasing is 0.4436 and the probability that the index remains unchanged 

is 0.1708. 

 

4.5. Determination of expected numbers of visits 

The expected numbers of visits to a particular state from another state in different steps can be 

computed to know the expected number of time the moving particle stay in certain states. Here, 

for NEPSE index the number of visits to a particular state in five trading days is shown in the 

following matrix. 
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𝜇𝑖𝑗(5) =  [
2.0542 0.8980 2.0477
1.9175 0.7548 2.3275
1.8221 0.8538 2.3239

] 

The matrix obtained above to explore the expected number of visits reveals that if the NEPSE 

index starts from the increasing state, the expected number of visits the chain for NEPSE index 

makes to the increasing state out of five trading days is 2.0542, to the state remains same is 

0.8980 and to the state decrease is 2.0477.  

Likewise if the NEPSE index starts from decreasing state, the expected number of visits the 

chain makes to the state increase is 1.8221, to the state remains same is 0.8538 and to the state 

decrease is 2.3239. 

 

4.6. Determination of expected return time 

It will be meaningful to understand about the expected duration the NEPSE index will stay in 

the increase, decrease or remains in the same state. The steady state transition probabilities are 

used to determine the expected return time to a state starting from the same state. For a finite 

irreducible Markov chain the expected return time to the same state is reciprocal of the steady 

state probabilities. Here for the NEPSE index the expected return time to the increasing state 

(U), starting from the same increasing state (U) is 𝜇𝑈 = 1/ 0.3855 = 2.594. This result shows that 

the chain for NEPSE index should visit the increasing state (U) on average in three days. In the 

similar fashion, the expected return time to remain in the same state (S), starting from the state 

remains same (S) is 𝜇𝑆 = 5.858. This means the chain for NEPSE index should visits the state 

remains same (S) on an average six days. The expected return time to the decreasing state (D), 

starting from the decreasing state (D) is 𝜇𝐷 = 2.254. This result helps to conclude that the chain 

should visits the decreasing state (D) on an average two days. 

 

 

5. Conclusion 

The Markov chain model to predict the stock market behavior assume that the performance of 

stock market is completely affected by the stochastic factors. The movement of stock index to 

the various states in a particular trading day is independent with the index of initial trading 

days but depends only on the index of the most recent day. The prediction of behavior of stock 

market is very complicated because many factors like regional and global economic conditions, 

socio-political conditions, poor-corporate governance, varying policies of the government, 

psychological factors of investors etc. have crucial role behind the performance of the market. 

Due to such complexity it is much better to make investment decisions on the basis of forecast 

results obtained using Markov chain model as well as giving prime considerations to the factors 

mentioned above.  

In this study the Markov chain model is applied to predict the behavior of NEPSE index. The 

predicted results are expressed in terms of probability of certain state of NEPSE index in the 

future. The model does not provide the forecasting results in an absolute state.  

The initial state vector and the transition probability matrices are used to estimate the 

probability of NEPSE index being in different states in the upcoming days. The steady state 
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probabilities are obtained from the nth step transition probability matrices. The result of steady 

state probability matrix shows that the chance of NEPSE index will increase in the near future is 

0.3855. The probability that the index will decrease in near future is 0.4436 and the index will 

remain in the same state with probability 0.1707. The expected number of visits to a particular 

state from other states are computed. The result shows that out of five trading days, the 

expected number of visits the chain for NEPSE index made to the increasing state starting from 

the increasing state is 2.0542. The expected number of visits to the decreasing state starting from 

the decreasing state out of five trading days for the chain is 2.3239. The result for expected first 

return time to a certain state starting from the same state shows that the NEPSE index will be in 

increasing state after three days when it was initially in increasing state. The chain for NEPSE 

index will be in decreasing state after two days when it was in decreasing state initially. 
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